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ABSTRACT 

We present here a simple method to approximate uniformly in Hilbert spaces 
uniformly continuous functions by C ~t functions. This method relies on explicit 
inf-sup-convolution formulas or equivalently on the solutions of 
Hamilton-Jacobi equations. 

Introduction 

Let H be a Hilbert  space and let us denote  by ]. ] and (. , .  ) its norm and scalar 

product respectively. Let u @ B U C ( H )  - -  space of bounded uniformly continu- 

ous scalar functions. The problem we consider here concerns the approximation 

of u by a sequence u, of functions in C~(H) or even C~"(H) t such that u~ 

converges uniformly on H to u. The usual way to find u, in the case when H is 

finite dimensional is to use convolution with smooth kernels: this method is not 

only explicit but enjoys a few important  propert ies like, for example:  

(1) sup IVu. t~ c sup I.t ,  
H H 

(2) suplVu,(x)-Vu~(y)l I x - y l - ' ~ C  suplul, 
x~y H 

(3) inf u -< u, ----< sup u on H, 
H H 

(4) sup Iv,. I -  -< sup I , ( x ) -  ,(y)l Ix - y I-' <--- + ~. 
H x~y 

' C ' (H) = {v • C ' (H),  v, I7o bounded on H}; C~"(H) = {v E C~(H), Vo Lipschitz on H}. 
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In addition, the regularization commutes with translations, is uniformly bounded 

in C~ '~ if u E C~ A and it is order-preserving . . . .  

Unfortunately, this method breaks down when H is infinite dimensional. Our 

goal here is to present a simple method which works for arbitrary Hilbert spaces 

and which still enjoys properties (1)-(4), which commutes with translations, 

preserves order . . . .  We have in fact an explicit formula for the approximations 

u, : indeed, we prove in section I below that 

u~(x)=sup inf [u(Y)+ 2~e [z-yl2-11z-xl2 ] 
° z~_H y E H  E 

as well as 

[ 1 ] 
a ~ ( x ) = i n f s u p  u ( y ) -  1 [ z -  r +  e y - I z - x l  

are elements of ~'J Cb , that they satisfy (1)-(4) and in addition 

(5) _u~ =< u =< 12~ on H 

and 5~, _u, converge uniformly on H to u. 

There exist other approximation methods valid in infinite dimension, but we 

are not aware of any other method satisfying (1)-(4), or preserving translation 

and order, or as explicit as the inf-sup-convolution formula. In [7] A. S. 

Nemirovskii and S. M. Semenov have proved that functions of B U C ( B ) -  

where B is the unit ball of an Hilbert space H - -  can be uniformly approximated 

on B by functions in the class C~'~(B) (see (viii) below at the end of part I), and 

that there exist functions in BUC(B) which cannot be uniformly approximated 

by functions with uniformly continuous second order derivatives. Hence the 

space C], '~ is the natural space for uniform approximation of BUC functions by 

more regular functions. 
Let us mention that the main difference with convolution type regularizations 

(in finite dimensions) consists in the nonlinearity of the above method. 

At this stage, we would like to make a few remarks on u,, a, and in particular 

we wish to pinpoint the relations with Hamilton-Jacobi equations. Indeed, 

consider the following equations: 

~ U  1 I m~, 12 (6) ~ ' . ~ v u  = 0  i n H x ] 0 , + ~ [ ,  u l ,= 0 = v  i n H ,  

resp. (7) Onot ½1Vul2=0 inHx]0,+oo[, u],.0=v inH; 
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where H is, to simplify, finite dimensional and v E BUC(H).  Observe that, 

formally, (7) is obtained from (6) by "reserving time". Then, it is known that the 

"right solutions" of (6) (resp. (7)), namely the viscosity solutions introduced by 

M. G. Crandall and P. L. Lions [2] - -  see also for further properties M. G. 

Crandall, L. C. Evans and P. L. Lions [4] - -  are given by the Lax-Oleinik 

formula: 

(8) u(x,t)=inf / v ( y ) + l l x - y [  :} 
yEH ~ 

yEH 

and these solutions form a semigroup that we denote by $~(t) (resp. S_~(t)) 
where F(p)= ½1P 12: for a proof of these facts we refer to P. L. Lions [6]. 

We observe next that the proposed regularized functions are nothing but: 

In fact, as we will see later on, we could as well introduce some two-parameters 

approximation of u, namely 

_u,,~ = s _ ~ ( 8 ) s ~ ( E ) u ,  ~.~ = s ~ ( 8 ) s _ ~ ( ~ ) u ,  

choosing 0 < 8 < e. 

Let us emphasize that (7) corresponds only formally to a time reversal of (6) 

and that in general (because shocks are forming and entropy increases) 

S_~ (B)S~ (e)u does not coincide with S~ (e - 8)u. The equality holds essentially 

in the case of smooth u, say u in C'J(H), in which case we do have for e small 

enough: 

u_~.~ = S ~ ( e  - 8 ) u ,  a~.~ = S _ ~ ( e  - 8 ) u  

and thus _u~.8, tiE.~ ---> u as 8 ---> e. 

The reason for the regularity of _u,, tic (or ti,.,,_u,.,) is the following: if 

v E Ca (H) then S~(t)v (resp. S_~(t)v) is for t > 0 in W~'®(H) and semi-concave 

(resp. semi-convex) and more precisely we have 

1 i X_Xol2 is concave for a l l x o • H  Sp(t)v -~-~ 

(resp. S_rv +(1/2t)]x-Xo[ 2 is convex for all x06 H). Such results first consi- 

dered in P. L. Lions [6] are elementary observations that we recall in section II 
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below. Hence, u,.8 (for instance) is for any 6 > 0 semi-convex but, in addition, 

since Sv (e)u  is semi-concave for all e > 0 with "second derivatives" bounded by 

1/e it is not difficult to check on the.characteristics (at least formally) that for 

8 < e, S_F(8) [Sv(e)u] is still semi-concave. And this yields the C~b "t regularity! 

This second step has already been observed in I. Ekeland and J. M. Lasry [5]. 

Let us also mention that if v is convex, then SF(t)v is nothing else than the 

Yosida approximation of v (of order t) and it is well-known that SF(t)v 
C~I(H). 

Note also that the kernel ~ ( y )  = I Y 12 could be replaced in the inf-sup-formula 

by any convex, even, C-" function (with ~ ( 0 ) =  0) such that ~"(x)>= c Id, c > 0, 

for all x in a neighborhood of 0. 
We conclude this introduction by mentioning that our motivation for the 

regularization problem comes from the study of Hamil ton-Jacobi  equations in 

infinite dimensional spaces which is being developed by Barbu and Da Prato [1], 

M. G. Crandall and P. L. Lions [3] and that the above explicit regularization 

ideas are being applied in [3]. 
Let us finally mention that everywhere below we identify H with its dual. 

I. Main properties of the regularizations 

Let u E BUC(H) ,  i.e. assume there exists m continuous, nondecreasing on 

[0, ~[ such that: m (0) = O, m (t + s )  =< m (t)  + m (s)  for s, t >= 0 and: 

(10) l u ( x ) - u ( y ) l < - _ m ( I x - y l ) ,  for all x, y E H .  

We consider for O< 6 < e, x ~ H 

zEH yEH 

a , , , = S F ( 8 ) S _ v ( e ) u = i n f s u p  u(y) - -  I z -- y I-" + ~--~-e I z 
zEH yEH 

THEOREM. The functions u,.8, u,.8 belong to C~'I(H). Let t, be the maximum 

positive root of: t 2, = 2e m (t,), so that t~e -i/2 __., 0 as e --* O. We have the following 

inequalities: 

(11) -0o_-< inf u < _u,,t < =  = u  =< tL.t <= s u p u  _<-oo o n H ;  
H H 

(12) suplu,.,-ul~m(t,); supla,.~-ul~m(t,); 
H H 
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(13) lu_,.,(x)-u_,.,(y)l<=m(Ix-yl), 

(14) sup [Vu, ,  I < t, 
6 

(15) tVu_,.,(x)-V,_,.,(y)l<-_c,.,Ix-yl, 

t~ [a,.,-ul<-_m(t, + t , )+~-~ ; 

sup IVa,.~ I_- < t - ' "  
H 8 

forallx, y E H, where C,,8 = Max(6-1,  (e - 6)-1). • 

REMARKS. (i) If U E CI'~(H), Vu E W~'~(H), then _u,.~ = Sv(e - 6)u for  e 

small enough (while tL.~ = S-F (e - 6 ) u )  and V u~.~ remains  uni formly bounded  in 

W~~(H) for  e small enough,  

If u E B U C ( H )  is Ho lde r  cont inuous  then so are _u,,~ and ti,,8, and I_u~.~ I, =< 

lul~ and la~,lo----lulo with: 

Iv [~ = Sup{I v(x)- v(y)t/Ix - y Iv; x, y ~ / 4 ,  x #  y} 

(this is a part icular  case of (13)). As a general  rule if u E B U C ( H )  enjoys  more  

regularity,  the functions u,.s, a,.~ will (usually) also en joy  more  regulari ty.  For  

example ,  it can be shown that if u E C 2÷p (H) ,  p E N, u,,~ and ti,.~ be long also to 
C2+p(H). 

(ii) Clearly,  the regular izat ions c o m m u t e  with translat ions and they preserve  

order  (if u -< v on H, then _u,.8 -< _v,.~, tL.~ =< 5~.~). 

(iii) If u 6 Cb (H) ,  then _u,:.~, a,.~ E C~'I(H) and they converge  to u pointwise 

in H as e, B ~ 0. More  general ly,  if u E C(H) and satisfies 

lu(x)l<=f(l÷lxlb on H 

then for e small enough  (and 0 <  6 < e) ~.8, u,.s E C'"(H), they converge  

pointwise to u as e, # ---~ 0, and VS,.~ may be bounded  toge ther  with its Lipschitz 

modulus  on balls by constants  depending  only on the growth of u on balls . . . .  In 

addit ion if u is uni formly cont inuous  on balls/~R, one  checks easily that  _u,.~, tL.~ 

converge  uniformly on balls to u. Finally if u is iower-semicont inuous  and 

bounded  below, then _u~.~ E C U ( H )  for 0 < 6 < e, and u,.~ converges  pointwise 

to u when e, 6 ~ 0 .  

(iv) If one  is only interes ted in regularizing functions in U C ( H )  into Lipschitz 

functions,  it is enough to consider  : 

u'(x)= inf [u(y)+ l l x -  YlP 

for  any p -->- 1 (if p = 1, one  has to take e small enough)  - -  and one  may replace 

( l /e)1 x ]P by (1 /e )~( I  x 1) for  a general  q~ even,  convex,  q~(0) = 0 and q~---~ + oo as 
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t ---> + oo. In addition, let us mention that this regularization works in an arbitrary 

Banach space (or even metric spaces, take (1/e)d(x, y)). 

(v) Let us finally mention a few additional properties of the above regulariza- 

tion: first of all, if u is convex (resp. concave) then _u,.s, tL.s are also convex (resp. 

concave). Indeed we just have to prove that if u is convex then SF (e)u is convex. 

But observing that u (y )+  (1/2e)l x - y ] 2 is jointly convex in (x, y), and using the 

lemma in section II, we see that SF (e)u is convex. The second property we wish 

to mention concerns a subsolution of convex Hamilton-Jacobi equations: let 

F E C(H)  be convex, let f E UC(H),  let u E UC(H)  be a viscosity subsolution 

(see [3] for the precise definition) of: 

F(Vy)<=f(x) in H. 

Then it is possible to show that _u,,s, ri~,s satisfy 

F ( V v ) < f ( x ) + l ~ ( e , ~ )  in H 

where /z(E, ~)--*0 as e, 8 ~ 0 + .  

(vi) We would like to mention that if e >= e ' >  8 ' - ~  > 0 then one checks 

easily that 

y,.~ ~ y,,~, ~ u =~ ~,,~, <= ~,.~. 

Another inequality is obtained by remarking that we have 

_u~.~(x)=<infsup u ( y ) + ~ e l y - z  - ]z 
yf~H z ~ H  

=,eHinf u(y)~-2(e ~---~IY 

= S~(E - ~ ) u ( x )  

while a,.a => S _ ~ ( e -  8)u on H. 

(vii) Another property of the Inf-Sup convolutions _u,.~, a,.~ concerns critical 

points. Indeed, first of all, these regularizations preserve the symmetries of u: 

for instance, if u is even on H then u,.~, t]~,s are also even. More generally, if u is 

invariant by a group of isometries of H, so are _u,.~, a,.~. This fact is interesting in 

itself but also fundamental for critical point theory. Next, we remark that S~F(t) 

(for t small) preserves the critical points of u at least if u E C ''j. 

Finally, it was observed in I. Ekeland and J. M. Lasry [5] that if u is 

semi-convex and satisfies (P.S.) condition then for t small v = S F(t)u is C ~'' and 

also satisfies (P.S.). Furthermore, Vv may be used as a pseudo-gradient for u. 
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Applications to critical point theorems are given in [5] (see also A. Pommelet [8] 

for related considerations). 

We conjecture that if u is Lipschitz (to simplify) and satisfies (P.S.) (with 

Clarke gradient), then u,.,, tL., also satisfy (P.S.). This would enable one to 

employ critical point theory for nonsmooth functions via this regularization. 

(viii) The last property of the inf-sup convolutions we wish to mention 

concerns the possibility of extending and regularizing a function u uniformly 

continuous on a subset K of H (this gives another proof of theorem 1 in [7]): 

indeed, consider 

u~.~(x)=supinf  u ( y ) +  , 

z E H  y E K  

then u,.sEC'"(H), u>=_u~.~>=u-m(L)on K, IV~.~(x)l<=t,/e on n .  

Note also that if v is CI"(H), then w defined by w(x) = v(x)+ k Ix 12 is convex 

for large k, hence v = w -  k I.I 2 is the difference of two convex functions 

(compare with the approximation method in [7, theorem 1]). 

II. Proofs 

We first show the string of inequalities in (11): the first one is deduced from the 

inequality u > inf ,  u, while the second one comes from the choice y = x in the 

definition of _u~,,. The other inequalities are proved similarly. 

Next, we observe that the explicit formula yields the fact that if u satisfies (10), 

then S÷~.(t)u also satisfies (10) for all t _-> 0, thus proving (13). 

We next remark that if u satisfies (10), then the infimum defining SF(A)u(x)I 
(resp. the supremum defining S F(A)u(x)) for A > 0 may be restricted to points y 

satisfying 

(16) {y-x]2<=2Am(]y-x]),  or l y - x ]< t~ .  

Indeed, consider for example S~(t)u(x); since S~(t)u <= u we may restrict the 

infimum to points y such that 

l tx I x< u ( y ) + ~ -  - y  = u ( x )  

and using (10) we deduce (16). And, since S~(e)u <= _u,., <= u, (16) implies: 

u~,~ = u - re(t,), and (12) is proved. Notice also that (16) easily yields that if u 

satisfies (10), then S~F(A)u is Lipschitz for A > 0  and 

<t~ 
IS+~(A)u(x)-S+~(A)u(y)l=-~lx-y 1, Vx, y. 
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Recalling that S,_F (t) preserves moduli of continuity for t => 0, we deduce that 

_u,.8, a,,~ are Lipschitz with t , /e  as Lipschitz constant. This proves (14) (in a weak 

form at least). 

It remains to show that _u,.8, ti,,8 E C"I(H) and that (15) holds: we will prove 

these claims for u~.,, the proof being identical for ~,.8. We first recall (from [6] for 

example) that if u E UC(H) ,  SF(t)u = V (resp. S-r(t)u) is semi-concave (resp. 

semi-convex) and more precisely that we have 

1 ( , 1  
(17) v - ~-~ t x 12 is concave on H resp. v 2t I x 12 is convex on . 

Indeed for each y C H, the function 

is attine in x and thus 

[ + 1  1 ] v-'~lx =infy~. u(y) 2t Ix-yl2-~lxl2 

is concave on H. Hence u,, _u~,, satisfy 

1 12 _u~ -~e-e Ix is concave on H, 

(17') 1 

u~.~ + ~ I x 12 is convex on H. 

We next want to show that u~,8 - I x  t2/2(E -,~) is concave on H and this will 

again be a general property of S-F(t). Indeed, let u E U C ( H )  satisfy 

11x12 u - ~ -  is concave on H 

for some A > 0, then for 0 < t < )t, v --- S-F(t)U satisfies 

v 2(alt)  Ix r 

This claim follows from the equality: 

is concave on H. 

1 ~(~) ~(~1,)ixl~ su~ [~(~)-~ i~f ~ * l l ~ l ~ l l x -  ~1 ~ ~(~,)Ixrl 

= sup [~(x ,  y)] 
y E H  
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where ~(x,  y) is - -  as is easily checked - -  concave with respect to (x, y). 

We conclude applying the elementary 

LEMMA. Let cb be jointly concave in (x ,y )  on H ×  H and let q, (x)=  

supy~H qb(x, y )<oc ,  then ~b is concave on H. 

Indeed, let xl, x2 E H, let e > 0, choose yl, y2 in H such that 

q,(x,)_-< ~(x, ,  y,) + ~, ~(x2)_-< ~(x2, y 0 +  ~ ; 

then for 0 E [0, 1]: 

6(Ox, + (1 - O)x2) >= ~(Ox, + (1 - O)x2, Oyl + (1 - O)y~) 

>= O~(x,, y , )+  (1 - O)~(x2, y2) 

>-_ oqJ(x,) + (1 - o )q , (x~) -  

(the first inequality comes from the definition of 6, the second from the joint 

concavity of qb and the third from the choices of yl, y2). We conclude sending e 

to 0. 
1 In conclusion, we have proved that Y,.8 satisfies y,.~ +~C,.~ Ix 12 is convex, 

y,.~ - ½C,.s Ix [5 is concave. This yields that y,.~ E CI(H) and we wish to show that 

this implies in fact y,.~ E C~'I(H) and that (15) holds. This is well-known in finite 

dimensions but it seems to require a justification in general. Denote  v = y~.8, 

C = C,,~, let x, y, s ¢ E H and consider H~ the vector space spanned by x, y, ~. The 

restriction Vl of v to H~ still satisfies the semi-concavity and semi-convexity 

properties of v with the same constant C. Hence v, E C~"(H~) and 

IVVl(X)-Vv,(Y)[ <- f i x  - y l. 

But Vv l ( x )=  P~Vv(x), Vv~(y)= P1Vv (y) where P1 is the orthogonal projection 

onto H1 and thus 

I ( V v ( x ) - V v ( y ) ,  ~)1--< f i x  - y I I¢1. 

Since ~: is arbitrary, we conclude. • 
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